Banner
References
Riabilitazione dei deficit motori di natura neurologica: stimolazione transcranica
published in January - February 2015 - in Il Fisioterapista - issue n.1

There are no translations available.

Bibliografia

  1. Pascual-Leone A, Valls-Sole J, Wasserrmann EM, Hallett M. Response to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994; 117: 847-58.
  2. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal Physiol 2000; 527: 633-9.
  3. Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individual and subjects with stroke: a systematic review and meta-analysis. Clin Neurophysiol 2012; 123: 644-57.
  4. Floel A. tDCS enhances motor and cognitive function in neurological diseases. NeuroImage 2014; 85: 934-47.
  5. Rothwell J. Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson’s Disease and dystonia. Parkinsonism Relat Disord 2007; 13: S417-20.
  6. Wu AD, Fregni F, Simon DK, Deblieck C, Pascual-Leone A. Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurotherapeutics 2008; 5: 345-61.
  7. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol1962; 5: 436-52.
  8. Purpura DP, Mc Murtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 1965; 28: 166-85.
  9. Madhavan S, Shah B. Enhancing motor skill learning with transcranial direct current stimulation – A concise review with applications to stroke. Front Psychiatry 2012; 3: 66-72.
  10. Lang N, Siebner HR, Ward NS, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European J Neurosci 2005; 22: 495-504.
  11. Paulus W, Tergau F, Nitsche MA, Ziemann U. Transcranial magnetic stimulation and transcranial direct current stimulation. 1st ed. Amsterdam: Elsevier, 2003.
  12. Chiappa HK (ed). Evoked potentials in clinical medicine. 3rd ed. Philadelphia (PA): Lippincott-Raven Publishers, 1997.
  13. Wassermann E, Epstein MC, Ziemann U. The Oxford Handbook of transcranial stimulation. 1st ed. Oxford (UK): Oxford University Press, 2008.
  14. Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997; 48(5): 1398-403.
  15. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: across-sectional fMRI study. Brain 2003; 126: 1430-48.
  16. Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E. Chronic repetitive transcranial magnetic stimulation alters β-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 1999; 816: 78-83.
  17. Kinsbourne M. Hemi-neglect and hemisphere rivalry. Adv Neurol 1977; 18: 41-9.
  18. Robertson E M, Theöret H, Pascual-Leone A. Studies in cognition: The problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 2003; 15: 948-60.
  19. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004; 61: 1844-8.
  20. Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM. Follow-up of interhemispheric differences of motor evoked potentials from the “affected” and “unaffected” hemispheres in human stroke. Brain Res 1998; 803(1-2): 1-8.
  21. Loubinoux I, Carel C, Pariente J, et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 2004; 20(4): 2166-80.
  22. Nair DG, Hutchinson S, Fregni F, et al. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage 2007; 34(1): 253-63.
  23. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-96.
  24. Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol 2008; 65(12): 1571-6.
  25. Schwenkreis P, Witscher K, Pleger B, Malin JP, Tegenthoff M. The NMDA antagonist memantine affects training induced motor cortex plasticity – A study using transcranial magnetic stimulation. BMC Neuroscience 2005; 6: 35-42.
  26. O’Shea J, Boudrias MH, Stagg CJ, et al. Predicting behavioral response to tDCS in chronic motor stroke. Neuroimage 2014; 85: 924-83.
  27. Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 2007; 87(6): 719-36.
  28. Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128: 490-9.
  29. Hummel FC, Voller B, Celnik P, et al. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 2006; 7: 73-9.
  30. Boggio PS, Nunes A, Rigonatti SP, et al. Repeated sessions of non-invasive brain Dc stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 2007; 25(2): 123-9.
  31. Mahmoudi H, Haghighi AB, Petramfar P, et al. Transcranial direct current stimulation; electrode montage in stroke. Disabil Rehabil 2011; 33: 1383-8.
  32. Kim DY, Lim JY, Kang EK. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am J Phys Med Rehabil 2010; 89(11): 879-86.
  33. Nitsche MA, Roth A, Kuo MF, et al. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci 2007; 27: 3807-12.
  34. Butler AJ, Shuster M, O'Hara E, et al. A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J Hand Ther 2013; 26(2): 162-70.
  35. Suzuki K, Fujiwara T, Tanaka N, et al. Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers. Int J Neurosci 2012; 122(11): 675-81.
  36. Brunoni AR, Ferrucci R, Bortolomasi M, et al. Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(1): 96-101.
  37. Lefebvre S, Laloux P, Peeters A. et al. Dual-tDCS enhances online motor skills learning and long term retention in chronic stroke patients. Front Hum Neurosci 2013; 6: 334-43.
  38. Nitsche, MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57: 1899-901.
  39. Lefebvre S, Dricot L, Gradkowski W, Laloux P, Vandermeeren Y. Brain activations underlying different patterns of performance improvement during early motor skill learning. Neuroimage 2012; 62: 290–9.
  40. Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill and beyond. Curr Opin Neurobiol 2011; 21: 636-44.
  41. Muellbacher W, Ziemann U, Wissel J, et al. Early consolidation in human primary motor cortex. Nature 2002; 415: 640-4.
  42. Reis J, Robertson EM, Krakauer JW, et al. Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimul 2008; 1(4): 363-9.
  43. Robertson EM , Pascual-Leone A, Miall RC. Current concepts in procedural consolidation. Nat Rev Neurosci 2004; 5: 576-82.
  44. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: Sleep dependent motor skill learning. Neuron 2002; 35: 205-11.
  45. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature 1996; 382: 252-5.
  46. Shadmehr R, Brashers-Krug T. Functional stages in the formation of human long-term motor memory. J Neurosci 1997; 17: 409-19.
  47. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science 1997; 277: 821-5.
  48. Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 2006; 117(8): 1641-59.
  49. Mally J, Dinya E, Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain Res Bull  2008; 76: 388-95.
  50. Grefkes C, Nowak DA, Wang LE, et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 2010; 50: 233-42.
  51. Talelli P, Greenwood RJ, Rothwell JC. Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol 2007; 118(2): 333-42.
  52. Koganemaru S, Mima T, Nakatsuka M, et al. Human motor associative plasticity induced by paired bihemispheric stimulation. J Physiol 2009; 587: 4629-44.
  53. Fregni F, Simon DK, WU A, et al .Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurology Neurosurgery Psychiatry 2005; 76(12): 1614-23.
  54. Benninger DH, Lomarev M, Lopez G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 1105-11.
  55. Lefaucheur JP, Drouot X, Von Raison F, et al. Improvement of motor performance and modulation of cortical excitability by ripetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 2004; 115: 2530-41.
  56. Siebner HR, Mentschel C, Auer C, Conrad B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport 1999; 10: 589-94.
  57. Hess RF, Thompson B. New insights into amblyopia: binocular therapy and noninvasive brain stimulation. J AAPOS  2013; 17(1): 89-93.
  58. Fregni F, Boggio PS, Valle AC, et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006; 37: 2115-22.
  59. Rosenbaum, Richard B. Understanding Parkinson's Disease: a personal and professional view. Westport (CT): Greenwood Publishing Group 2006.
  60. Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry 2005; 86: 1614-23.
  61. Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 2005; 116(2): 244-53.
  62. Dannon PN, Iancu I, Grunhaus L. Psychoeducation in panic disorder patients: Effect of a self-information booklet in a randomized, masked-rater study. Depress Anxiety 2002; 16(2): 71-6.
  63. Naeser MA, Martin PI, Nicholas M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang 2005;93(1): 95-105.
  64. Goetz CG, Leurgans S, Raman R. Placebo-associated improvements in motor function: comparison of subjective and objective sections of the UPDRS in early Parkinson’s disease. Mov Disord 2002; 17(2): 283-8.
  65. Grüner U, Eggers C, Ameli M, et al. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm 2010; 117: 207-16.
  66. Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 2000; 123: 394-403.
  67. Jahanshahi M, Jenkins IH, Brown RG, et al. Self-initiated versus externally triggered movements. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995; 118: 913-33.
  68. Helmich RC, Aarts E, de Lange FP, Bloem BR, Toni I. Increased dependence of action selection on recent motor history in Parkinson’s disease. J Neurosci 2009; 29: 6105-13.
  69. Palmer A, Capra S, Baines SK. Association between eating frequency, weight and health. Nutr Rev 2009; 67(7): 379-90.
  70. Okabe S, Ugawa Y, Kanazawa I; Effectiveness of rTMS on Parkinson's Disease Study Group. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003; 18: 382-8.
  71. Mally J, Stone TW. Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Science 1999; 162: 179-84.
  72. Tergau F, Naumann U, Paulus W, Steinhoff BJ. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 1999; 353: 2209.
  73. Fahn S, Marsden CD, Calne DB, Goldstein M. Florham Park NJ. Unified Parkinson’s disease rating scale. In: Recent Developments in Parkinson’s Disease Volume 2. Macmillan Healthcare Information 1987; 2: 153-63.
  74. Elahi B, Elahi B, Chen R. Effect of transcranial magnetic stimulation on Parkinson motor
  75. function--systematic review of controlled clinical trials. Mov Disord 2009; 24(3): 357-63.
  76. Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 1998; 78: 1-10.
  77. Berardelli A, Rothwell JC, Hallett M, et al. The pathophysiology of primary dystonia. Brain 1998; 121(Pt7): 1195–212.
  78. Hallett M. Pathophysiology of dystonia. J Neural Transm Suppl 2006; (70): 485-8.
  79. Edwards MJ, Huang YZ, Wood NW, Rothwell JC, Bhatia KP. Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. Brain 2003; 126: 2074-80.
  80. Buttkus F, Baur V, Jabusch HC, et al. Single-session tDCS supported re-training does not improve fine motor control in musician’s dystonia. Restor Neurol Neurosci 2011; 29: 85-90.
  81. Young SJ, Bertucco M, Sheehan-Stross R, Sanger TD. Cathodal transcranial direct current stimulation in children with dystonia: a pilot open-label trial. J Child Neurol 2013; 28(10): 1238-44.
  82. Mink JW. The Basal Ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003; 60:1365-8.
  83. Delmaire C, Vidaihet M, Elbaz A, et al. Structural abnormalities in the cerebellum and sensory-motor circuit in writer’s cramp. Neurol 2007; 69: 376-80.
  84. Brighina F, Romano M, Giglia G, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res 2009; 192: 651-6.
  85. Schneider S, Pleger B, Draganski B, et al. Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia–An fMRI-TMS study. Mov Disord 2010; 25: 76–83.
  86. Seibner R, Filipovic SR, Rowe JB, et al. Patients with focal arm dystonia have increased sensitivity to slow‐frequency repetitive TMS of the dorsal premotor cortex. Brain 2003; 126: 2710-25.
  87. Plewnia C, Bartels M, Gerloff C. Transient suppression of tinnitus by transcranial magnetic stimulation. Ann Neurol 2002; 53: 253-66.
  88. Miniussi C, Cappa SF, Cohen LG, et al. Efficacy of repetitive transcranial magnetic stimulation/ transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 2008; 1: 326-36.
  89. Nitsche, MA, Cohen LG, Wassermann EG, et al. Transcranial direct current stimulation. State of the art 2008. Brain Stimul 2008; 1: 206-23.

Ulteriori approfondimenti

  • Benninger DH, Lomarev M, Lopez G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 1105-11.
  • Butefisch C, Khurana V, Kopylev L, Cohen L. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J Neurophysiology 2004; 91: 2110-4.
  • Carr J, Sheperd R. A motor learning model for rehabilitation. In: JH Carr et al. (ed). Held movement science: foundations for physical therapy in rehabilitation. Rockville, MD: Aspen, 1987; 31-91.
  • Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron 2011; 72: 433-54.
  • Fregni F, Boggio PS, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005; 16(14): 1551-5.
  • Grüner-Nielsen L, Wandel M, Kristensen P, et al. Dispersion-compensating fibers. J Lightwave Technol 2005; 23: 35-66.
  • Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair  2012; 26: 282-92.
  • Kantak SS, Sullivan KJ, Fisher BE, Knowlton BJ, Winstein CJ. Neural substrates of motor memory consolidation depend on practice structure. Nature Neurosci 2010; 13: 923-5.
  • Kleim JA. Neural plasticity and neurorehabilitation: teaching the new brain old tricks. J Comm Disord 2011; 44: 521-8.
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51: S225-39.
  • Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neuro-rehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair 2012; 26(8): 923-31.
  • Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006; 19: 84-90.
  • Krakauer JW, Shadmehr. Consolidation of motor memory. Trends Neurosci 2006; 29: 58-64.
  • Jahanshahi M,  Rothwell J. Transcranial magnetic stimulation studies of cognition: an emerging field. Exp Brain Research 2000; 131: 1-9.
  • Liebs TR, Herzberg W, Rüther W, et al. Multicenter arthroplasty aftercare project. Multicenter randomized controlled trial comparing early versus late aquatic therapy after total hip or knee arthroplasty. Arch Phys Med Rehabil 2012; 93(2): 192-9.
  • Nowak D, Bösl K, Podubeckà J, Carey J. Non invasive brain stimulation and motor recovery after stroke. Restor Neuro Neuroscience 2010; 28: 531-44.
  • Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport 1998; 9: 2257-60.
  • Reis J, Schambraa HM, Cohenal LG, et al. Noninvasive cortical stimulation enhances motor skills acquisition over multiple days through an effect on consolidation. PNAS USA 2009; 106: 1590-5.
  • Stagg CJ, Bachtiar V, O’Shea J, et al. Cortical activation changes underlying stimulation-induced behavioral gains in chronic stroke. Brain 2012; 135: 276-84.
  • Stuss TD, Winocur G, Robertson HI. Cognitive Neurorehabilitation. 1st ed. Cambridge University Press, 1999.

 
There are no translations available.