Banner
Home Fascicolo n.4/2008 Bibliografia
Bibliografia
Riabilitazione del cammino: evidenze e limiti della robotica
pubblicato nel Luglio - Agosto 2008 ne Il Fisioterapista - fascicolo n.4

Bibliografia

  1. Perry J. Gait analysis. Normal and Pathological Function. SLACK Incorporated 1992; 1: 3.

  2. Sherrington CS. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of PhysiologyLondon 1910; 40: 28-121.

  3. Brown TG. The intinsic factors in the act of progression in the mammal. Proc R Soc Lond 1911; B84: 308-19.

  4. Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN. Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res. 1972 Aug 11; 43(1): 276-9.

  5. Forssberg H, Grillner S, Rossignol S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 1975 Feb 21; 85(1): 103-7.

  6. Kuhn RA. Functional capacity of the isolated human spinal cord. Brain 1950; 73(1): 1-51.

  7. Forssberg H, Johnels B, Steg G. Is parkinsonian gait caused by a regression to an immature walking pattern? Adv Neurol 1984; 40: 375-9.

  8. Grillner S, Zangger P. How detailed is the central pattern generation for locomotion? Brain Research 1975; 88: 367-71.

  9. Duysens J, Pearson KG. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Research 1980; 187: 321-32.

  10. Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM. Mechanical entrainment of fictive locomotion in the decerebrate cat. Journal of Neurophysiology 1994; 71: 2074-86.

  11. Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 2006; 577: 617-39.

  12. Armstrong DM, Drew T. Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements. J Physiol 1984 May; 350: 33-54.

  13. Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B. Neural bases of goal-directed locomotion in vertebrates - An overview. Brain Research Reviews 2007.06.027.

  14. Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K. Cerebellar-induced Locomotion: Reticulospinal Control of Spinal Rhythm Generating Mechanism in Cats. Annals of the New York Academy of Sciences 1998; 860: 94-105.

  15. Sultan F, Glickstein M. The cerebellum: Comparative and animal studies. Cerebellum 2007; 6(3): 168-76.

  16. Duysens J, Henry WA, Van de Crommert A. Neural control of locomotion - Part 1: The central pattern generator from cats to humans. Gait and Posture 1998; 7: 131-41.

  17. Miller S, Van der Burg J, Van der Meche FGA. Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res 1975; 91: 217-37.

  18. Edgerton VR, Grillner S, Sjostrom A, Zangger P. Central generation of locomotion in vertebrates. In: Herman RM, Grillner S, Stein P, Stuart DG,editors. Neural Control of Locomotion. New York: Plenum 1976: 439-64.

  19. Chandler SH, Baker LL, Goldberg LJ. Characterization of synaptic potentials in hindlimb extensor motoneurons during L-DOPA-induced fictive locomotion in acute and chronic spinal cats. Brain Res 1984; 303: 91-100.

  20. Fleshman JW, Lev-Tov A, Burke RE. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons; the synaptic basis of functional diversity. Exp Brain Res 1984; 54: 133-49.

  21. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987; 412: 84-95.

  22. Floeter MK, Sholomenko GN, Gossard J-P, Burke TE. Disynaptic excitation from the medial longitudinal fasciculus to lumbosacral motoneurons: modulation by repetitive activation, descending pathways, and locomotion. Exp Brain Res 1993; 92: 407-19.

  23. Orlovsky GN, Deliagina TG, Grillner S. Neuronal control of locomotion. Oxford: Oxford University Press 1999.

  24. McCrea A. Spinal circuitry of sensorimotor control of locomotion. Jour. of Physiology 2001; 533(1): 41-50.

  25. Grillner S, Zangger P. How detailed is the central pattern generation for locomotion? Brain Research 1975; 88: 367-71.

  26. Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences 1998; 860: 360-76.

  27. Kuo Arthur D. the relative roles of feedforward and feedback in the control of rythmic movements. Motor Control 2002; 6: 129-45.

  28. Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992; 30: 229-38.

  29. Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on rules of spinal locomotion is effective in spinal cord injured persons. Eur J Neurosci 1995; 7: 823-9.

  30. Dobkin BH. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks. Prog Brain Res 2000; 128: 99-111.

  31. Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 1991; 71: 842-56.

  32. Flynn TW, Canavan PK, Cavanagh PR, Chiang JH. Plantar pressure reduction in an incremental weight bearing system. Phys Ther 1997; 77: 410-6.

  33. Mangione KK, Axen K, Haas F. Mechanical unweighting effects on treadmill exercise and pain in elderly people with osteoarthritis of the knee. Phys Ther 1996; 76: 387-94.

  34. Fritz JM, Erhard RE. A nonsurgical treatment approach for patients with lumbar spinal stenosis. Phys Ther 1997; 77: 962-73.

  35. Hesse S, Bertelt C, Schaffrin A, Malezic M, Mauritz KH. Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support. Arch Phys Med Rehabil 1994; 75(10): 1087-93.

  36. Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M et al. Treadmill training with partial body weight support as compared to physiotherapy in non-deambulatory hemiparetic patients. Stroke 1995; 26: 976-81.

  37. Hesse S, Helm B, Krajnik J, Gregoric M, Mauritz KH. Treadmill training with partial body weight support: influence of body weight release on the gait of hemiparetic patients. J Neurol Rehabil 1997; 11: 15-20.

  38. Teixeira I da Cunha Filho, Peter AC, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. Journal of Rehabilitation Research and Development 2001 March/April; 38(2).

  39. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994; 344: 1260-3.

  40. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 1995; 37: 574-82.

  41. Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A. Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehab 1999; 80: 225-35.

  42. Behrman AL, Lawless-Dixon AR, Davis SB et al. Locomotor training progression and outcomes after incomplete spinal cord injury. Physical Therapy 2005; 85: 1356-71.

  43. Lindquist A, Christiane L Prado, Ricardo ML Barros, Mattioli R, Paula H Lobo da Costa, Tania F Salvini. Gait Training Combining Partial Body-Weight Support, a Treadmill, and Functional Electrical Stimulation: Effects on Poststroke Gait. Physical Therapy 2007; 87: 1144.

  44. Macko RF, DeSouza CA, Tretter L et al. Treadmill aerobic exercise training reduces energy expenditure and cardiovascular demands of hemiparetic gait in chronic stroke patients: a preliminary report . Stroke 1997; 28: 326-30.

  45. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegig patients using a robotic orthosis. Journal of rehabilitation research and development. 2000 Nov/Dec; 37(6): 693-700.

  46. Hesse S, Malezic M, Schaffrin A, Mauritz KH. Restoration of gait by a combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients. Scand J Rehabil Med 1995; 27: 199-205.

  47. Forssberg H. On integrative motor functions in the cat’s spinal cord. Acta Physiol Scand Suppl 1979; 474: 1-56.

  48. Grillner S, Zangger P. On the central generation of locomotion in the low spinal cat. Exp Brain Res. 1979 Jan 15; 34(2): 241-61.

  49. Grillner S. Control of locomotion in bipeds, tetrapods and fish. In: Brookhart M, Mountcastle V, editors. Handbook of physiology. Washington, DC: American Physiological Society 1981: 1179-235.

  50. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results. IEEE transactions on neural systems and rehabilitation engineering. 2005 September; 13(3).

  51. Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. JRRD 2006; 43(5).

  52. Hidler J, Nichols D, Pelliccio M, Brady K. Advance in the understanding and Treatment of stroke impairment using robotic devices. Top Stroke Rehabilitation 2005; 12(2): 22-35.

  53. Bien ZZ, Stefanov D. Advances in rehabilitation robotics: Human-friendly technologies on movement assistance and restoration for people with disabilities. BerlinGermany: Springer 2004.

  54. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 2000; 80: 688-700.

  55. Dietz V, Mueller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002; 125(12): 2626-34.

  56. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001 May; 39(5): 252-5.

  57. Nash M, Jacobs P, Johnson B, Field- Fote E. Metabolic and cardiac Responses to robotic- assisted locomotion in motor- complete tetraplegia: a case report. Spinal Cord Medicine 2004; 27: 78-82.

  58. Lokomat Simposium 2004, atti del congresso.

  59. Hornby TG, Acosta S al. Changes in locomotor performance in spinal cord injured subjects following bodyweight supported, robotic-assisted treadmill training. Soc Neurosci Abstr 2002.

  60. Hornby TG, Zemon DH, Campbell D. Robotic-Assisted Body-Weight–Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury. Physical Therapy 2005; 85: 52-66.

  61. Mirbagheri MM, Tsao C, Pelosin E, Rymer WZ. Therapeutic Effects of Robotic-Assisted Locomotor Training on Neuromuscular Properties Proceedings of the 2005 IEEE. 9th International Conference on Rehabilitation Robotics. June 28 - July 1 2005, Chicago, IL, USA.

  62. Zemon DH, Wirz M, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG. Effectiveness of automated locomo-tor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil 2005; 86(4): 672-80.

  63. Lünenburger L, Colombo G, Riener R, Dietz V. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics June 28 - July 1 2005, Chicago, IL, USA.

  64. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of Locomotion Training With Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients After Stroke. Stroke 2007; 38: 349-54.

  65. McCrea DA, Rybak IA. Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. “Computational Neuroscience” Progress in Brain Research, editors P Cisek, T Drew and J Kalaska. 2007; 165: 237-55.

  66. McCrea D, Ilya A. Rybakb. Organization of mammalian locomotor rhythm and pattern generation. Accepted manuscript. Aug 7, 2007.

  67. Andersson O, Grillner S. Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta Physiologica Scandinavica 1983; 118: 229-39.

  68. Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006; 86: 89-154.