Home Fascicolo n.5/2020 Bibliografia

Disabilità nel cammino: nuove tecnologie integrate al
progetto riabilitativo individuale tradizionale

pubblicato nel Settembre - Ottobre 2020 ne Il Fisioterapista - fascicolo n.5


  1. Reinkensmeyer D, Dietz V. Neurorehabilitation Technology. 2nd ed. Sprinfer, Cham; 2016.
  2. Dijkers MP, de BearPC, Erlandson RF, et al. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. J Rehabil Res Dev 1991; 28(2): 33-44.
  3. Krebs HI, Hogan N, Aise ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 1998; 6(1): 75-87.
  4. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patient using a robotic orthosis. J Rehabil Res Dev 2000; 37(6): 693-700.
  5. Katz RT, Rymer WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil 1989; 70(2): 144-55.
  6. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 2004; 27: 145-67.
  7. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 2001; 24(8): 1000-19.
  8. Diezpt V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain 2014; 13(Pt 3): 654-67.
  9. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006; 19(1): 84-90.
  10. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018 Jun 5; 15(1): 46.
  11. Beek P, Roerdink M. Evolving insights into motor learning and their implications for neurorehabilitation. In: Selzer M, et al. (Eds.), Textbook of neural repair and rehabilitation. Cambridge: Cambridge University Press, 2014; pp. 95-104.
  12. Mazzoleni S, Focacci A, Franceschini M, et al. Robot-assisted end-effector-based gait training in chronic stroke patients: a multicentric uncontrolled observational retrospective clinical study. NeuroRehabil 2017; 40(4):483-92.
  13. Aprile I, Iacovelli C, Goffredo M, et al. Efficacy of end-effector Robot-Assisted Gait Training in subacute stroke patients: Clinical and gait outcomes from a pilot bi-centre study. NeuroRehabil 2019; 45(2): 201-12.
  14. Gagnon DH, Vermette M, Duclos C, et al. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton. Disabil Rehabil Assist Technol 2019; 14(2): 138-45.
  15. Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J NeuroEngin Rehabil 2016; 13: 53.
  16. Hesse S, Schattat N, Mehrholz J, Werner C. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion. NeuroRehabilitation 2013; 33(1): 77-84.
  17. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke2014; 45(7): 2053-8.
  18. Poritz JMP, Taylor HB, Francisco G, Chang SH. User satisfaction with lower limb wearable robotic exoskeletons. Disabil Rehabil Assist Technol 2020; 15(3): 322-7.