Banner
References
Hemiplegia: use of robotic devices for upper limb rehabilitation
published in January - February 2020 - in Il Fisioterapista - issue n.1

References

  1. Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabilitation Med 2003; Suppl 41: 7-10.
  2. Kaas JH. Plasticity of sensory and motor maps in adult mammals. Ann Rev Neurosci 1991; 14: 137-67.
  3. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following skill learning. J Neurophysiol 1998; 80: 3321-5.
  4. Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representation in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000; 74: 27-55.
  5. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representation in primary motor cortex of adult squirrel monkeys. J Neurosci 1996; 16: 785-807.
  6. Bayona NA, Bitensky J, Salter K, Teasell R. The role of Task-specific training in rehabilitation therapies. Top Stroke Rehabil 2005; 12(3): 58-65.
  7. Taub E, Morris DM. Constrain-Induced Movement Therapy to enhance recovery after stroke. Curr Atheroscler Rep 2001; 3: 279-86.
  8. Fraser C, Power M, Hamdy S, et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 2002; 34: 831-40.
  9. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006; 8: 708-12.
  10. Nair DG, Renga V, Lindenberg R, Zhu L, Schlaug G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor Neurol Neurosci, 2011; 29(6): 411-20.
  11. Padilla-Castaneda MA, Sotgiu E, Barsotti M, et al. An orthopaedic robotic-assisted rehabilitation method of the forearm in virtual physiotherapy. J Health Eng 2018; 2018: 7438609.
  12. Sicuri C, Porcellini G, Merolla G. Robotics in shoulder rehabilitation. Muscle Tendons Ligaments J 2014; 4(2): 207-13.
  13. Nerz C, Schwickert L, Becker C, et al. Effectiveness of robot-assisted training added to conventional rehabilitation in patients with humeral fracture early after surgical treatment: protocol of a randomized, controlled, multicenter trial. Trials 2017; 18 (1): 589.
  14. Maciejasz P, Eschweller J Gerlach –Hahn K, Jamsen-Troy A, Leonardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng and Rehabil 2014, 11: 3.
  15. Basteris A, Nijenhuis S, Stiernen AHA, et al. Training modalities in robot-mediates upper limb rehabilitation in stroke: a framework classification based on a systematic review. J Ner J Neuroeng and Rehabil 2014; 1: 111.
  16. Colombo C, Pisano F, Delconte C, et al. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Europ J Phys Rehab Med 2017, 4, 53 (2): 240-8.
  17. Sale P, Lombardi V, Franceschini M. Clinical study hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. New Technologies for Stroke Rehabilitation 2012; article ID 820931.
  18. Vanoglio F, Bernocchi P, Mulè C, et al. Feasibility and efficacy of a robotic device for hand rehabilitationin hemiplegic stroke patients: a randomized pilot controlled study. Clin Reahbil 2017; 31 (3): 351-60.
  19. Mazzoleni S, Sale P, Tiboni M, et al. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil 2013; 92 (10 Suppl 2): 26-37.
  20. Seitz RJ, Kammerzel A, Samartzi M, Jander S, Wojtecki L. Monitoring of visuomotor coordination in Healthy subjects and patients with stroke and Parkinson’s disease: an application study using the PABLO r-device. Int J Neurorehabil Eng 2014, 1: 2.
  21. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based and motor therapy after stroke. Brain 2008; 131: 425-37.
  22. Franceschini M, Colombo R, Posteraro F, Sale P. A proposal for an Italian minimum data set assessment protocol for robot assisted rehabilitation: an Italian Study. Eur Phys J Med 2015; 51: 745-53.
  23. Merholz J, Handrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strengthafter stroke. Cochrane Data Base Rev 2012 Jun 13; 6.
  24. Sivan M, O Connor RJ, Makover S, Levesley M, Bakhta B. Systematic review of outcome measures in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med 2011; 43: 181-9.
  25. Franceschini M, Goffredo M, Pournajaf S, et al. Predictors of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients. Plos one 2018; 13 (2): 13(2): e0193235.
  26. Baptiste S, Law M, Pollock N, et al. The Canadian Occupational Performance Measure. World Federation of Occupational Therapy Bullettin 2016,28: 47-51.
  27. Krebs HI, Hogan N, Aisen ML e Volpe BT: Robot aided neurorehabilitation. IEEE Trans Eng, 1998; 6(1):75-87.
  28. Hesse S, Wener C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke a single-blinded randomized trial in two centers. Stroke 2005; 36 (9): 1960-6.
  29. Varalta V, Picelli A, Forte C, Montemezzi G, La Marchina E, Smania N. Effect of controlesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: a case series study. J Neuroeng Rehabil 2014, 11; 160.
  30. Bissolotti E, Villafalle JH, Gaffurini P, Valdes K, Negrini S. Changes in skeletal muscle perfusion and spasticity in patients with post-stroke hemiparesis treated by robotic assistance (Gloreha) of the hand. J Phys Ther Sci 2013, 28: 769-73.
  31. Kwakkel G, Kollen BJ, Krebbs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Rep 2008; 22 (2): 111-21.